
Security Best Practices
for PostgreSQL

WHITEPAPER

EDBPOSTGRES.COM

EDB | WWW.EDBPOSTGRES.COM

01

SECURITY BEST PRACTICES FOR POSTGRESQL

1. Executive Summary 02

2. Introduction 03

3. Applying PostgreSQL Security Features to the AAA Framework 05

3.1 – Authentication

3.2 – Password Profiles

3.3 – Authorizations

3.3.1 – Access to database objects

3.3.2 – Views

3.3.3 – Row Level Security

3.3.4 – Data Redaction

3.4 Auditing

3.5 Data Security

3.6 SQL Injection Attacks

4. Further Reading 12

Contents

EDB | WWW.EDBPOSTGRES.COM

02

SECURITY BEST PRACTICES FOR POSTGRESQL

This white paper presents a framework and a

series of recommendations to secure and protect

a PostgreSQL database. We discuss a layered

security model that addresses physical security,

network security, host access control, database

access management, and data security. While

all of these aspects are equally important, the

paper focuses on PostgreSQL specific aspects

of securing the database and the data. For

our discussion of the specific security aspects

relating to the database and the data managed

in the database, we use an AAA (Authentication,

Authorization, and Auditing) approach common

to computer and network security.

Most of the recommendations in this paper are applicable to PostgreSQL (the community edition) and to EDB

Postgres™ Advanced Server (Advanced Server), the enterprise-class, feature-rich commercial distribution of

PostgreSQL from EnterpriseDB® (EDB™). Advanced Server provides additional relevant security enhancements, such

as Password Profiles, Auditing, Data Redaction, and SQL Server Injection Protection that are not available in the

same form in PostgreSQL.

This document has been updated for PostgreSQL 12 and EDB Postgres Advanced Server 12.

Executive Summary

1

EDB | WWW.EDBPOSTGRES.COM

03

SECURITY BEST PRACTICES FOR POSTGRESQL

We can think of security in layers, and advise a strategy of granting the

least access necessary for any job or role, blocking unnecessary access

at the earliest opportunity.

Introduction

2

First is to secure physical access

to the host

Next is to limit access to your

corporate network in general

Next is to limit access to the

database host

Next is to limit access to the database

application

Next is to limit access to the data

contained within

Next is to secure the data stored within

We can think of security in layers,

and advise a strategy of granting

the least access necessary...

EDB | WWW.EDBPOSTGRES.COM

04

SECURITY BEST PRACTICES FOR POSTGRESQL

• Keep your operating system and your database

patched. EDB’s support subscriptions provide

timely notifications of security updates and

appropriate patches for Postgres. There are a variety

of tools available for monitoring for operating

system upgrades that can integrate with package

management systems such as yum/dnf or apt.

• Don’t put a postmaster port on the internet, unless

it is truly vital to your business. Firewall this port

appropriately; if that’s not possible, make a read-

only standby database available on the port, instead

of a read-write master. Network port forwarding with

auditing of all connections is a valid alternative.

• Isolate the database port from other network traffic

through subnetting or other techniques.

™• Grant users the minimum access they require to

do their work, nothing more; reserve the use of

superuser accounts for tasks or roles where it is

absolutely required.

• Restrict access to configuration files (postgresql.

conf and pg_hba.conf) and log files (pg_log) to

administrators.

• Disallow host system login by the database

superuser roles (postgres on PostgreSQL,

enterprisedb on EDB Postgres Advanced Server).

Enable superuser access only as required, in

exceptional circumstances.

• Provide each user with their own login; shared

credentials are not a recommended practice and

they make auditing more complicated. Alternatively,

use the edb_audit_tag capability (available in EDB

Postgres Advanced Server only) to allow applications

to add more audit information to sessions resulting

from application-level connections.

• Don’t rely solely on your front-end application to

prevent unauthorized access to your database;

integrate database security with enterprise level

authentication and authorization models, such as

LDAP/AD or Kerberos.

• Keep backups, and have a tested recovery plan.

No matter how well you secure your system, it is

still possible for an intruder to get in and delete

or modify your data. Ensure your backups are kept

securely as well, to prevent unauthorised access.

General Recommendations

It may be helpful to think of security in terms of the AAA model developed for network and computer security. AAA

stands for Authentication, Authorization, and Auditing.

• Authentication: verify that the user is who they claim to be.

™• Authorization: verify that the user is allowed access.

• ○Auditing (or Accounting): record all database activity, including the user name and the time in the log files.

™

Not all features fit neatly into these categories, but the AAA model offers a useful framework for this discussion.

EDB | WWW.EDBPOSTGRES.COM

05

SECURITY BEST PRACTICES FOR POSTGRESQL

Applying PostgreSQL Security Features
to the AAA Framework.
The following sections provide detailed outlines of how to add PostgreSQL security features

to the AAA Framework.

3.1 Authentication

The pg_hba.conf (PostgreSQL host-based access)

file restricts access based on user name, database,

and source IP (if the user is connecting via TCP/IP).

Authentication methods are assigned in this file as

well. The authentication method (or methods) you

choose depends on your use case.

Kerberos/GSSAPI — PostgreSQL supports GSSAPI

with Kerberos authentication according to RFC

1964. GSSAPI provides automatic authentication

(single sign-on) for systems that support it. The

authentication itself is secure, but data sent over the

database connection is unencrypted unless GSS or

SSL encryption is in use.

SSPI — Use this if you are on a Windows system

and would like to implement Single Sign-On (SSO)

authentication.

LDAP should only be used if Kerberos (which

includes both SSPI and GSSAPI) are out of the

question. LDAP is less secure because passwords are

forwarded to the LDAP server, and it can easily be set

up in an insecure way.

LDAP and RADIUS — LDAP and RADIUS are useful

in situations where you have large numbers of users

and need to manage passwords from a central

location. This centralization has the advantage

of keeping your pg_hba.conf file small and more

manageable, and gives your users a “unified

password experience” across your infrastructure.

Both LDAP and RADIUS require solid infrastructure,

as you are relying on the service and connectivity to

that service to access your database.

RADIUS should not be used because it has weak

encryption, using md5 hashing for credentials.

Cert — TLS certificate authentication (sometimes

referred to as SSL) can be used for encryption

of the traffic on the wire and for authentication.

Certificates are often used in machine-to-machine

communication.

md5 — md5 stores username and password

information in the database, which may be a suitable

alternative if you have a very small number of users.

Scram is highly preferred over md5 as the passwords

are securely hashed.

3

EDB | WWW.EDBPOSTGRES.COM

06

SECURITY BEST PRACTICES FOR POSTGRESQL

3.2 Password Profiles

Starting with version 9.5, Advanced Server supports Oracle-compatible password profiles when using MD5 or

SCRAM authentication. A password profile is a named set of password attributes that allow a DBA to easily manage a

group of roles that share comparable authentication requirements. Each profile can be associated with one or more

users. When a user connects to the server, the server enforces the profile that is associated with the login role.

See Section 2.3 “Profile Management” of EDB’s Database Compatibility for Oracle® Developer’s Guide for more

information, available here.

Scram — If you have a very small number of

trusted users, you may want to use scram-sha-256

authentication. Scram is highly preferred over md5 as

the passwords are securely hashed.

Reject — Use this method to reject specific users,

connections to specific databases, and/or specific

source IPs.

Trust — trust authentication should only be used

in exceptional circumstances, if at all, as it allows

a matching client to connect to the server with no

further authentication.

It’s imperative that you have a full understanding of

the ramifications of each authentication method. See

the PostgreSQL documentation for a more detailed

study of these and other authentication methods.

As mentioned in the Introduction, access to the pg_

hba.conf file should be restricted to administrators.

Try to keep this file properly pruned; larger, more

complicated files are harder to maintain and more

likely to contain incorrect or outdated entries. Review

this file periodically for unnecessary entries.

Profiles can be used to:

™• Specify the number of allowable failed login attempts.

• Lock an account due to excessive failed login attempts.

• ™Mark a password for expiration.

• Define a grace period after a password expiration.

™• Define rules for password complexity.

™• Define rules that limit password reuse.

https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/user-guides/database-compatibility-for-oracle-developers-guide/12/Database_Compatibility_for_Oracle_Developers_Guide.1.030.html
https://www.postgresql.org/docs/current/static/auth-methods.html

EDB | WWW.EDBPOSTGRES.COM

07

SECURITY BEST PRACTICES FOR POSTGRESQL

3.3 Authorization

Once the user has been properly authenticated, you must grant permissions to view data and perform work in

the database. As previously advised, grant only those privileges required for a user to perform a job and disallow

shared (group) login credentials. Manage users and groups in PostgreSQL via role assignments. A role may refer

to an individual user or a group of users. In Postgres, roles are created at the cluster (database server) level. This

means roles are applied to all databases defined for the cluster/database server; it is very important to limit role

permissions appropriately. Permissions can be applied to database objects (tables, views, functions, etc), to rows

inside of tables, and to redaction policies.

3.3.1 – Access to database objects

Assigned privileges and caveats are outlined in the PostgreSQL CREATE ROLE documentation:

• Revoke CREATE privileges from all users and grant them back to trusted users only.

• Don’t allow the use of functions or triggers written in untrusted procedural languages.

• SECURITY DEFINER functions allow users to run functions at an elevated privilege level in a controlled way,

but a carelessly written function can inadvertently reduce security. Review the documentation (section Writing

Security Definer Functions Safely of CREATE FUNCTION) for more details.

• Database objects should be owned by a secure role, ideally one with very restricted access to the database

(e.g. from a Unix Domain Socket only), and not by a role that an application user can connect with. This

minimizes the chance that an attacker can modify or drop objects. Whilst this is preferred from a security

perspective, it may be problematic with application frameworks that manage the schema themselves - such

functionality should be implemented with caution.

Be aware that when log_statement is set to ‘ddl’ or higher, changing a role’s password via the ALTER ROLE

command will result in password exposure in the logs, except in EDB Postgres Advanced Server 11 and higher,

where the edb_filter_log.redact_password_command instructs the server to redact stored passwords from the log

file. Click here for more details.

When authentication information (e.g., usernames and passwords) is stored in a table, use of statement logging

can expose that information, even if the table is nominally secure. Similarly, if sensitive information is used in

queries (for example any kind of personally identifiable information as a key); those parameters can be exposed by

statement logging.

https://www.postgresql.org/docs/current/static/sql-createrole.html
https://www.postgresql.org/docs/current/static/sql-createfunction.html
https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/installation-getting-started/release-notes/11/EPAS_Release_Notes.1.4.html

EDB | WWW.EDBPOSTGRES.COM

08

SECURITY BEST PRACTICES FOR POSTGRESQL

3.3.2 – Views

Access to views can be controlled as

described above (they are database objects),

and views can in turn be used to limit

visibility of data to certain groups of users

by creating a VIEW of a table and limiting

permissions for that VIEW. PostgreSQL

versions 9.2 and higher provide the option

to CREATE VIEW WITH (security_barrier),

if extra precaution is deemed necessary to

avoid possible security issues such as the

one described by Robert Haas.

3.3.3 – Row Level Security

PostgreSQL introduced Row Level Security (RLS) in

version 9.5. RLS allows fine-grained access to table

rows based on the current user role. This includes

SELECT, UPDATE, DELETE, and INSERT operations.

See more information here.

EDB Postgres Advanced Server includes an Oracle-

compatible implementation of this mechanism in its

DBMS_RLS package, which includes Oracle compatible

implementations of ADD_POLICY, DROP_POLICY, and

UPDATE_POLICY. For more information, click here.

3.3.4 – Data Redaction

Data redaction - the ability to hide some data elements or selectively obfuscate data for certain groups of users

is another technique to manage access to data. EDB Postgres Advanced Server introduced data redaction in

version 11.

Data redaction is a policy-based tool that works with PostgreSQL roles to grant or revoke read access to certain

data elements. For example, one group of users sees social security numbers as XXX-XX-1235, whereas data

admin role members see the full detail. Here is additional information about data redaction.

Constant Type Value Description

NONE INTEGER 0 No redaction, zero effect on the result of a query against table.

FULL INTEGER 1 Full redaction, redacts full values of the column data.

PARTIAL INTEGER 2 Partial redaction, redacts a portion of the column data.

RANDOM INTEGER 4
Random redaction, each query results in a different random
value depending on the datatype of the column.

REGEXP INTEGER 5
Regular Expression based redaction, searches for the pattern of
data to redact.

CUSTOM INTEGER 99 Custom redaction type.

3.13.1 Using DBMS_REDACT Constants and Function Parameters

http://rhaas.blogspot.com/2012/03/security-barrier-views.html
https://www.postgresql.org/docs/current/ddl-rowsecurity.html
https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/user-guides/database-compatibility-for-oracle-developers-built-in-package-guide/12/Database_Compatibility_for_Oracle_Developers_Built-in_Package_Guide.1.31.html
https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/user-guides/database-compatibility-for-oracle-developers-built-in-package-guide/12/Database_Compatibility_for_Oracle_Developers_Built-in_Package_Guide.1.28.html

EDB | WWW.EDBPOSTGRES.COM

09

SECURITY BEST PRACTICES FOR POSTGRESQL

3.4 Auditing

Advanced Server provides the capability to produce audit reports. Database auditing allows database

administrators, auditors, and operators to track and analyze database activities in support of complex auditing

requirements. These audited activities include database access and usage along with data creation, change, or

deletion. The auditing system is based on configuration parameters defined in the configuration file.

We recommend that you audit, (listed by increasing the level of scrutiny):

• User connections

• DDL changes

• Data changes

• Data views

Highly detailed levels of scrutiny can result in a lot of log messages; log only at the level you need. With Postgres,

you can adjust logging levels on a per-user and per-database basis. Review your audit logs frequently for

anomalous behavior. Establish a chain of custody for your logs.

Keep in mind that a high logging level, combined with storage of passwords in the database, can result in

passwords being displayed in the logs. EDB Postgres Advanced Server has introduced the edb_filter_log.redact_

password_commands extension in version 11 to instruct the server to redact stored passwords from the audit log

file.

Here, see more information on Advanced Server’s audit log capability.

Advanced Server allows database and security

administrators, auditors, and operators to

track and analyze database activities using

the EDB Audit Logging functionality.

https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/user-guides/user-guide/12/EDB_Postgres_Advanced_Server_Guide.1.43.html

EDB | WWW.EDBPOSTGRES.COM

10

SECURITY BEST PRACTICES FOR POSTGRESQL

3.5 Data Encryption

PostgreSQL offers encryption at several levels, and provides flexibility in protecting data from disclosure due to

database server theft, unscrupulous administrators, and insecure networks:

™• User connections

• DDL changes

• Data changes

™• Data views

You can read more about these options in the PostgreSQL documentation.

If you are concerned about data being sniffed during transfer between a client and the database, enable SSL in the

postgresql.conf file unless you can be certain that data sniffing is not a risk. While SSL encryption can add some

overhead and certificate management can be tricky, in general this is a recommended practice.

You can also encrypt data within the database, or at the filesystem level (one or the other). See more about

Transparent Data Encryption on EDB’s blog. With this encryption option, the data is decrypted as it is read from the

filesystem, so DBAs can view data; it’s imperative to have roles and privileges locked down. Other options include

the use of Thales Vormetric Transparent Encryption (VTE).

Use the pgcrypto contrib module to encrypt data on a per-column basis. There are a few drawbacks to this method:

• There’s a potential performance hit, depending on the size of the table.

• The encrypted fields can’t be searched or indexed.

• The encryption must be applied at table creation time, requiring advanced planning.

• Encryption key management can also be complex.

Additionally, your application must handle the encryption/decryption so that each exchange with the database

remains encrypted to prevent an unscrupulous DBA from viewing data.

https://www.postgresql.org/docs/current/static/encryption-options.html
https://www.enterprisedb.com/blog/postgres-and-transparent-data-encryption-tde
https://www.enterprisedb.com/blog/thales-vormetric-transparent-encryption-edb-postgres

EDB | WWW.EDBPOSTGRES.COM

11

SECURITY BEST PRACTICES FOR POSTGRESQL

3.6 SQL Injection Attacks

A SQL injection attack is an attempt to compromise a database by running SQL statements that provide clues

to the attacker as to the content, structure, or security of the database. Preventing a SQL injection attack is

normally the responsibility of the application developer. Database administrators typically have little or no

control over the potential threat.

The standard method to prevent SQL injection attacks in PostgreSQL is to use parameterized queries. If you are

using EDB Postgres Advanced Server, we recommend you use the SQL/Protect module to protect against SQL

injection attacks. SQL/Protect provides a layer of security in addition to the normal database security policies

by examining incoming queries for common SQL profiles. SQL/Protect gives control back to the database

administrator by alerting the administrator to potentially dangerous queries and by blocking these queries. For

more information, click here.

4.1.2 Configuring SQL/Protect

shared_preload_libraries = ‘$libdir/dbms_pipe,$libdir/edb_gen,$libdir/sqlprotect’
 # (change requires restart)
 .
 .
 .
edb_sql_protect.enabled = off
edb_sql_protect.level = learn
edb_sql_protect.max_protected_roles = 64
edb_sql_protect.max_protected_relations = 1024
edb_sql_protect.max_queries_to_save = 5000

https://www.enterprisedb.com/edb-docs/d/edb-postgres-advanced-server/user-guides/user-guide/12/EDB_Postgres_Advanced_Server_Guide.1.50.html#pID0E0BDD0HA

EDB | WWW.EDBPOSTGRES.COM

12

SECURITY BEST PRACTICES FOR POSTGRESQL

Further Reading

4

• ●EDB Security Technical Implementation Guidelines (STIG) for PostgreSQL on
Windows and Linux

• Blog: How to Secure PostgreSQL: Security Hardening Best Practices & Tips

• Blog: Managing Roles with Password Profiles: Part 1

• Blog: Managing Roles with Password Profiles: Part 2

• Blog: Managing Roles with Password Profiles: Part 3

PostgreSQL is increasingly the database of choice for organizations looking to boost innovation and accelerate

business. EDB’s enterprise-class software extends PostgreSQL, helping our customers get the most out of it both

on premises and in the cloud. And our 24x7 global support, professional services, and training help our customers

control risk, manage costs, and scale efficiently.

With 16 offices worldwide, EDB serves over 4,000 customers, including leading financial services, government,

media and communications, and information technology organizations. To learn about PostgreSQL for people,

teams, and enterprises, visit EDBpostgres.com.

About EDB

https://www.enterprisedb.com/about-us/disa-approved-stig-for-deploying-postgresql-on-government-systems-securely-comply-dod-regulations
https://www.enterprisedb.com/about-us/disa-approved-stig-for-deploying-postgresql-on-government-systems-securely-comply-dod-regulations
https://www.enterprisedb.com/blog/how-to-secure-postgresql-security-hardening-best-practices-checklist-tips-encryption-authentication-vulnerabilities
https://www.enterprisedb.com/blog/managing-roles-password-profiles-part-1
https://www.enterprisedb.com/blog/managing-roles-password-profiles-part-2
https://www.enterprisedb.com/blog/managing-roles-password-profiles-part-3
https://www.enterprisedb.com/
https://twitter.com/EDBPostgres
https://www.linkedin.com/company/edbpostgres/
https://www.youtube.com/user/EnterpriseDB

EDB | WWW.EDBPOSTGRES.COM

13

SECURITY BEST PRACTICES FOR POSTGRESQL

EDBPOSTGRES.COM

WHITEPAPER

Security Best Practices
for PostgreSQL

© Copyright EnterpriseDB Corporation 2020

EnterpriseDB Corporation

34 Crosby Drive

Suite 201

Bedford, MA 01730

EnterpriseDB and Postgres Enterprise

Manager are registered trademarks of

EnterpriseDB Corporation. EDB and EDB

Postgres are trademarks of EnterpriseDB

Corporation. Oracle is a registered trademark

of Oracle, Inc. Other trademarks may be

trademarks of their respective owners.

